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ASR brief history
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1970 – 2010: 1st Generation

HMM • F. Jelinek, “Continuous speech recognition by statistical methods”, Proc. of the IEEE, 1976.
• J. Baker, “The DRAGON system--An overview”, T-ASSP, 1975.

GMM • B.H. Juang, “Maximum-likelihood estimation for mixture multivariate stochastic observations of Markov 
chains”, AT&T Technical Journal, 1985.

N-gram,
Smoothing

• F. Jelinek & R.L. Mercer, “Interpolated estimation of Markov source parameters from sparse data”, Proc. 
Workshop on Pattern Recognition in Practice, 1980.

• F. Jelinek, “The development of an Experimental Discrete Dictation Recognizer”, Proc. of the IEEE, 1985.

Tree based state tying • S. Young, J.J. Odell, P.C. Woodland, “Tree-based state tying for high accuracy acoustic modeling”, HLT 
workshop, 1994.

MAP,
MLLR

• C.H. Lee, C.H. Lin, B.H. Juang, “A study on speaker adaptation of the parameters of continuous density 
hidden Markov models”, T-IP, 1991.

• C.J. Leggetter & P.C. Woodland, “Maximum likelihood linear regression for speaker adaptation of continuous 
density hidden Markov models”, Computer Speech and Language, 1995.

fMLLR, Speaker 
adaptive training

• M.J.F. Gales, “Maximum likelihood linear transformations for HMM-based speech recognition”, Computer 
Speech and Language, 1998.

WFST • M. Mohri. Finite-State Transducers in Language and Speech Processing. Computational Linguistics, 1997.
• M. Mohri, F. Pereira, and M. Riley, “Speech Recognition with Weighted Finite-State Transducers”, 2008.

Discriminative
Training, MMI, MPE

• D. Povey, “Discriminative training for large vocabulary speech recognition”, Ph.D. dissertation, 2003.

HMM

WFST

Zhijian Ou, Invited Talk at National Conference on Acoustics, 2021/3/29, Shanghai



ASR brief history
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2011 – now：2nd Generation

DNN-HMM • A. Mohamed, G. Dahl, and G. Hinton, “Deep belief networks for phone recognition”, NIPS Workshop Deep 
Learning for Speech Recognition and Related Applications, 2009.

• G. Dahl, et al, “Context-dependent pre-trained deep neural networks for large-vocabulary speech recognition”, T-ASLP, 2012.
• F. Seide, G. Li, and D. Yu, “Conversational speech transcription using context-dependent deep neural networks”, Interspeech, 2011.
• D. Povey, et al, "Purely sequence-trained neural networks for ASR based on lattice-free MMI", Interspeech 2016.

NN-LM • Bengio, et al, “A Neural Probabilistic Language Model”, NIPS, 2001.
• Mikolov, et al, "Recurrent neural network based language model", Interspeech, 2010.

CTC • A. Graves, et al, “Connectionist temporal classification: Labelling unsegmented sequence data with recurrent 
neural networks”, ICML, 2006.

• H. Sak, et al, “Learning acoustic frame labeling for speech recognition with recurrent networks”, ICASSP, 2015.
• Y. Miao, et al, “EESEN: End-to-end speech recognition using deep RNN models and WFST-based decoding”, ASRU, 2015.

Attention seq2seq • D. Bahdanau, et al, “Neural machine translation by jointly learning to align and translate”, ICLR 2015.
• J. K. Chorowski, et al, “Attention-based models for speech recognition,” NIPS, 2015.
• W. Chan, et al @ google, “Listen, attend and spell: A neural network for large vocabulary conversational speech recognition”, ICASSP, 2016.

RNN Transducer • A. Graves, “Sequence transduction with recurrent neural networks,” ICML 2012 Workshop on 
Representation Learning.

• E. Battenberg, et al @ Baidu, “Exploring neural transducers for end-to-end speech recognition”, ASRU 2017.
• K. Rao, et al @ Google, “Exploring architectures, data and units for streaming end-to-end speech recognition with RNN-transducer”, ASRU 2017

Transformer • A. Vaswani, et al @ google, "Attention Is All You Need", NIPS, 2017.

CRF • H. Xiang, Z. Ou. "CRF-based Single-stage Acoustic Modeling with CTC Topology", ICASSP, 2019.

Zhijian Ou, Invited Talk at National Conference on Acoustics, 2021/3/29, Shanghai



Content
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I. Basics for end-to-end speech recognition (15*6=90 min)
1. Probabilistic graphical modeling (PGM) framework
2. Classic hybrid DNN-HMM models
3. Connectionist Temporal Classification (CTC)
4. Attention based Encoder-Decoder (AED)
5. RNN Transducer (RNNT)
6. Conditional random fields and sequence discriminative training

II. Improving end-to-end speech recognition (20*4=80 min)
1. Data-efficiency
2. Neural architecture search
3. Multilingual and crosslingual ASR
4. Language modeling

III. Open questions and future directions (10 min)

15-minute break
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Model

Learning

Inference
Human knowledge

+ Data

𝑝 𝑥, ℎ; 𝜃 : Generative model, e.g., Hidden Markov Model (HMM)

𝑝 ℎ|𝑥; 𝜃 : Discriminative model, e.g., Conditonal Random Field (CRF)

𝑝 ℎ|𝑥 ; 𝜃

Probabilistic Framework

We need probabilistic models, besides neural nets.

I.1 PGM



Probabilistic Graphical Modeling (PGM) Framework 

• Directed Graphical Models / Bayesian Networks (BNs)
 Self-normalized/Local-normalized

 e.g. Hidden Markov Models (HMMs), Neural network (NN) based 
classifiers, Variational AutoEncoders (VAEs), Generative Adversarial 
Networks (GANs), auto-regressive models (e.g. RNNs/LSTMs)
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• Undirected Graphical Models  / Random Fields (RFs) / Energy-based models

 Involves the normalizing constant 𝑍 / Globally-normalized

 e.g. Ising model, Conditional Random Fields (CRFs)

x1

x4

x2

x3

x1

x4

x2

x3

𝑝 𝑥1, 𝑥2, 𝑥3, 𝑥4 = 𝑝 𝑥1 𝑝 𝑥2|𝑥1 𝑝 𝑥3|𝑥2 𝑝 𝑥4|𝑥1, 𝑥3

𝑝 𝑥1, 𝑥2, 𝑥3, 𝑥4 =
1

𝑍
Φ 𝑥1, 𝑥2 Φ 𝑥2, 𝑥3 Φ 𝑥3, 𝑥4 Φ 𝑥1, 𝑥4

I.1 PGM



HMM Viewed as Directed Graphical Model
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t+1tt-11

xt+1xtxt-1x1

...

...

T

xT

...

...

The joint probability distribution of a hidden Markov model (HMM) :

State Initial 
Distr.

State Observation 
Distr.

State Transition 
Distr.

I.1 PGM

𝑝 𝜋1:𝑇 , 𝑥1:𝑇 = 𝑝 𝜋1 ෑ

𝑡=1

𝑇−1

𝑝 𝜋𝑡+1|𝜋𝑡 ෑ

𝑡=1

𝑇

𝑝 𝑥𝑡|𝜋𝑡
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I. Basics for end-to-end speech recognition
1. Probabilistic graphical modeling (PGM) framework
2. Classic hybrid DNN-HMM models
3. Connectionist Temporal Classification (CTC)
4. Attention based encoder-decoder (AED)
5. RNN transducer (RNNT)
6. Conditional random fields and sequence discriminative training

II. Improving end-to-end speech recognition
1. Data-efficiency
2. Neural architecture search
3. Multilingual and crosslingual ASR
4. Language modeling

III. Open questions and future directions

15-minute break

I.2 Classic



ASR: Basics

1. How to obtain 𝑝 𝒚 | 𝒙

2. How to handle alignment, since 𝐿 ≠ 𝑇

9

ASR (Automatic Speech Recognition) is a seq. discriminative problem
 For acoustic observations 𝒙 ≜ 𝑥1, ⋯ , 𝑥𝑇, find the most likely labels 𝒚 ≜ 𝑦1, ⋯ , 𝑦𝐿

Observations 𝒙 = 𝑥1⋯𝑥𝑇

Labels
𝒚
∥
𝑦1
⋮
𝑦𝐿

𝐿 ≠ 𝑇

𝜋1 𝜋2

𝜋3 𝜋5𝜋4

𝜋6

𝜋7 𝜋8

I.2 Classic

Separate 
neural network architectures 

and probabilistic model definitions !

Example of alignment



GMM-HMM: state transitions
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t+1tt-11

xt+1xtxt-1x1

...

...

T

xT

...

...

I.2 Classic

t-iy+n

t-iy+ng

f-iy+l

s-iy+l

it

at

good

we

iy t

g u d

w i:
we

good

at

it

Acoustic HMM states Lexicon Language model

a t

iy

t-iy+n

t-iy+ng

f-iy+l

s-iy+l

Phonetic context-dependency

State transitions in 𝝅 are determined by a state transition graph (WFST), constrained by 

A path 𝝅 ≜ 𝜋1, ⋯ , 𝜋𝑇 uniquely determines a label sequence 𝒚, but not vice versa.

GMM



GMM-HMM
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t+1tt-11

xt+1xtxt-1x1

...

...

T

xT

...

...

I.2 Classic

GMM

 Training: Maximum likelihood 𝑝 𝒚, 𝒙 = σ𝝅: ℬ𝐻𝑀𝑀 𝝅 =𝒚𝑝(𝝅, 𝒙) via the forward-backward algo.

 Inference: Viterbi Decoding via max
𝝅

𝑝 𝝅, 𝒙

A path 𝝅 uniquely determines 𝒚 via mapping ℬ𝐻𝑀𝑀



WFST
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I.2 Classic

• WFSTs (weighted finite-state transducers) for Viterbi decoding
 Pioneered by AT&T in late 1990’s [Mohri et al., 2008]

Acoustic HMMs:  H  Lexicon: L Language model: GPhonetic context-dependency: C

    N min det H det C det L G

Composed and optimized into a single WFST

which represents 𝑝 𝜋𝑡+1|𝜋𝑡 and is used in Viterbi decoder.

Well implemented in Kaldi toolkit https://github.com/kaldi-asr/kaldi

M. Mohri, et al., "Speech Recognition with Weighted Finite-State Transducers", 2008.

https://github.com/kaldi-asr/kaldi


DNN-HMM
• ASR state-of-the-art: DNNs of various network architectures (MLP, LSTM, CNN, 

Transformer, etc.), initially DNN-HMM

• Conventionally, multi-stage
monophone GMM-HMM 

 alignment & triphone tree building 
 triphone GMM-HMM
 alignment 
 triphone DNN-HMM 13

[Dahl, et al., TASLP 2012]

I.2 Classic

𝑝 𝑥𝑡|𝜋𝑡 =
𝑝 𝜋𝑡|𝑥𝑡 𝑝 𝑥𝑡

𝑝 𝜋𝑡

State posterior prob. 
estimated from the DNN, which needs 

frame-level alignments

State prior prob. 
estimated from the training data

Can be ignored.

G. Dahl, et al., "Context-dependent pre-trained deep neural networks for 
large-vocabulary speech recognition", TASLP, 2012.



• End-to-end in the sense that:
• Eliminate the construction of GMM-HMMs and phonetic decision-trees, and can be 

trained from scratch (flat-start or single-stage)

• In a more strict/ambitious sense:
• Remove the need for a pronunciation lexicon and, even further, train the acoustic and 

language models jointly rather than separately

• Trained to optimize criteria that are related to the final evaluation metric that we are 
interested in (typically, word error rate)

• Motivation
• Simplify system pipeline, reduce expert knowledge and labor (such as compiling the 

ProLex, building phonetic decision trees)

Advancing to end-to-end ASR: motivation

14



Advancing to end-to-end ASR: techniques

1. How to obtain 𝑝 𝒚 | 𝒙

2. How to handle alignment, since 𝐿 ≠ 𝑇

ASR is a sequence discriminative problem
 For acoustic observations 𝒙 ≜ 𝑥1, ⋯ , 𝑥𝑇, find the most likely labels 𝒚 ≜ 𝑦1, ⋯ , 𝑦𝐿

Observations 𝒙 = 𝑥1⋯𝑥𝑇

Labels
𝒚
∥
𝑦1
⋮
𝑦𝐿

𝐿 ≠ 𝑇

𝜋1 𝜋2

𝜋3 𝜋5𝜋4

𝜋6

𝜋7 𝜋8

• Need a differentiable sequence-
level loss of mapping acoustic 
sequence 𝒚 to label sequence 𝒙

• Explicitly: introduce hidden state sequence 𝝅, as in 
Connectionist Temporal Classification (CTC), 
RNN Transducer (RNNT), CRF

• Implicitly: as in Attention based Encoder-Decoder 
(AED)

15
Example of explicit alignment



History
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GMM-HMM
(IBM, AT&T, 1980s)

DNN-HMM
(2009)

CTC
(2006)

AED
(2015)

CTC-CRF
(2019)

RNN-T
(2012)

• [CTC] Graves, et al., “Connectionist Temporal Classification: Labelling unsegmented sequence data with 
RNNs”, ICML 2006. 

• [DNN-HMM] A. Mohamed, et al., “Deep belief networks for phone recognition”, NIPS Workshop Deep 
Learning for Speech Recognition and Related Applications, 2009.

• [RNNT] A. Graves, “Sequence transduction with recurrent neural networks”, ICML 2012 Workshop on 
Representation Learning.

• [AED] D. Bahdanau, et al., “Neural machine translation by jointly learning to align and translate”, ICLR 2015.
• [LF-MMI] D. Povey, et al., "Purely sequence-trained neural networks for ASR based on lattice-free MMI", 

INTERSPEECH 2016.
• [CTC-CRF] Xiang&Ou. "CRF-based Single-stage Acoustic Modeling with CTC Topology", ICASSP, 2019.

LF-MMI
(2016)
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I. Basics for end-to-end speech recognition
1. Probabilistic graphical modeling (PGM) framework
2. Classic hybrid DNN-HMM models
3. Connectionist Temporal Classification (CTC)
4. Attention based encoder-decoder (AED)
5. RNN transducer (RNNT)
6. Conditional random fields and sequence discriminative training

II. Improving end-to-end speech recognition
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4. Language modeling

III. Open questions and future directions

15-minute break

I.3 CTC



CTC: introducing blank symbol

Graves, et al., “Connectionist Temporal Classification: Labelling unsegmented sequence data with RNNs”, ICML 2006. 

• Motivation: training 𝑝 𝒚 | 𝒙 without the need for frame-level alignments 
between the acoustics 𝒙 and the transcripts 𝒚

I.3 CTC

 Introduce a state sequence 𝝅 ≜ 𝜋1, ⋯ , 𝜋𝑇,  where 𝜋𝑡 ∈ the-alphabet-of-labels  <b>

𝑝 𝝅| 𝒙 =ෑ

𝑡=1

𝑇

𝑝 𝜋𝑡|𝒙

Linear&Softmax Layer

𝑥1 𝑥𝑡 𝑥𝑇⋯ ⋯

Acoustic Encoder

ℎ1 ℎ𝑡 ℎ𝑇⋯ ⋯

𝑝 𝜋1|𝒙 𝑝 𝜋𝑡|𝒙 𝑝 𝜋𝑇|𝒙

𝑧𝑡 = 𝑊ℎ𝑡 ∈ ℝ𝐾+1

𝑝 𝜋𝑡 = 𝑘|𝒙 =
𝑒𝑥𝑝 𝑧𝑡

𝑘

σ𝑖 𝑒𝑥𝑝 𝑧𝑡
𝑖 ≜ 𝑝𝑡

𝑘 : the 

prob. of observing label 𝑘 at time 𝑡
The un-normalized outputs 𝑧𝑡 are 

often called logits.

Path posterior 

18

State posterior 



CTC topology
I.3 CTC

 State topology refers to the state transition structure in 𝝅, which basically determines 
the mapping ℬ𝐶𝑇𝐶 from 𝝅 to 𝒚

𝑝 𝒚|𝒙 = ෍

𝝅: ℬ𝐶𝑇𝐶 𝝅 =𝒚

𝑝(𝝅|𝒙)

𝑝 𝝅|𝒙 =ෑ

𝑡=1

𝑇

𝑝 𝜋𝑡|𝒙
Path posterior 

Label-seq posterior 

CTC topology : a mapping ℬ𝐶𝑇𝐶 maps 𝝅 to 𝒚 by
1. reducing repetitive symbols to a single symbol;
2. removing all blank symbols. 

ℬ −𝐶𝐶 − −𝐴𝐴 − 𝑇 − = 𝐶𝐴𝑇

19

Summing over all possible paths, which map to 𝒚



CTC: the gradient & the forward-backward algorithm
I.3 CTC

𝜕𝑙𝑜𝑔𝑝 𝒚|𝒙

𝜕𝑧𝑡
𝑘 = 𝐸𝑝(𝝅|𝒙,𝒚)

𝜕𝑙𝑜𝑔𝑝 𝝅|𝒙

𝜕𝑧𝑡
𝑘

∵ Fisher Equality [Ou, arxiv 2018]

= 𝐸𝑝(𝝅|𝒙,𝒚)
𝜕𝑙𝑜𝑔𝑝𝑡

𝜋𝑡

𝜕𝑧𝑡
𝑘

= 𝐸𝑝(𝝅|𝒙,𝒚) 𝛿 𝜋𝑡 = 𝑘 − 𝑝𝑡
𝑘

= 𝑝(𝜋𝑡 = 𝑘|𝒙, 𝒚) − 𝑝𝑡
𝑘

i.e., the error signal received by the acoustic 
encoder NN during training

∵ 𝑝 𝝅| 𝒙 =ෑ

𝑡=1

𝑇

𝑝𝑡
𝜋𝑡

i.e., 𝛾𝑡
𝑘, the posterior state occupation probability, calculated using the alpha-beta variables 

from the forward-backward algorithm [Rabiner, 1989]

Providing easy derivation and giving insight, not appeared in [Graves, et al., 2006] and elsewhere

20

For logit 𝑧𝑡
𝑘 , 1 ≤ 𝑡 ≤ 𝑇

Z. Ou. "A Review of Learning with Deep Generative Models from Perspective of Graphical Modeling", arXiv, 2018.



CTC: LM integration with WFSTs
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I.3 CTC

• Incorporate lexicon and LM to improve best-path-decoding

Lexicon: L Language model: GWFST representing CTC topology: T

Composed and optimized into a single WFST

• Best-path-decoding or Prefix-search-decoding
max
𝝅

𝑝 𝝅|𝒙 max
𝒚

𝑝 𝒚|𝒙

max
𝝅

𝑝 𝝅|𝒙 𝐿𝑀(ℬ𝐶𝑇𝐶 𝝅 )



WFST representation of CTC topology [Xiang&Ou, 2019]

EESEN T.fst Corrected T.fst

• Miao, et al., “EESEN: End-to-end speech recognition using deep RNN models and WFST-based decoding ”, ASRU 2015.
• Xiang&Ou. "CRF-based Single-stage Acoustic Modeling with CTC Topology", ICASSP, 2019.

Using corrected T.fst performs slightly better; The decoding graph size smaller, and the decoding speed faster.

I.3 CTC

22



• For WERs in apple-to-apple comparisons
• mono-phone clearly better mono-char, over WSJ-80h, Switchboard-300h, Librispeech-960h [Xiang&Ou, 2019]
• For low degree of grapheme-phoneme correspondence (e.g., English), wordpiece slightly worse than mono-

phone; For high degree (e.g., German), equally strong [Zheng, et al., 2021]

• Longer span, more training data needed
• Word-level CTC targets, trained on 3,400 hours of speech [Li et al., 2018]

CTC: Label units
I.3 CTC

Basic Units of 
Labels

Label Sequence

phoneme
DH AE1 T N IY1 DH ER0 AH1 V DH EH1 M HH AE1 

D K R AO1 S T DH AH0 TH R EH1 SH OW2 L D S IH1 
N S DH AH0 D AA1 R K D EY1

character
/grapheme

t h a t _ n e i t h e r _ o f _ t h e m _ h a d _ c r o s 
s e d _ t h e _ t h r e s h o l d _ s i n c e _ t h e _ d a r 

k _ d a y _
subword

/wordpiece
that_ ne i ther_ of_ them_ had_ cro s sed_ the_ 

th re sh old_ sin ce_ the_ d ar k_ day_

word
that neither of them had crossed the threshold 

since the dark day

23
• Zheng, et al., "Advancing CTC-CRF Based End-to-End Speech Recognition with Wordpieces and Conformers", 2021.
• J. Li, et al., "Advancing acoustic-to-word CTC model", ICASSP 2018.



CTC: shortcoming
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I.3 CTC

• Conditional independence assumption

𝑝 𝝅| 𝒙 =ෑ

𝑡=1

𝑇

𝑝 𝜋𝑡|𝒙

𝑥1 𝑥𝑡 𝑥𝑇⋯ ⋯

Acoustic Encoder

ℎ1 ℎ𝑡 ℎ𝑇⋯ ⋯

𝑝 𝜋1|𝒙 𝑝 𝜋𝑡|𝒙 𝑝 𝜋𝑇|𝒙

𝜋𝑡−1 𝜋𝑡

𝒙

𝜋𝑡+1

Graphical Model RepresentationComputational flow

Overcome
RNN-T

CTC-CRF
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I.4 AED



𝑥1 𝑥𝑡 𝑥𝑇⋯ ⋯

Encoder

ℎ1
𝑒𝑛𝑐 ℎ𝑡

𝑒𝑛𝑐 ℎ𝑇
𝑒𝑛𝑐⋯ ⋯

𝜶𝑖

𝑐𝑖

ℎ𝑖
𝑑𝑒𝑐ℎ𝑖−1

𝑑𝑒𝑐

𝑦𝑖−1 𝑦𝑖

ℎ1:𝑇
𝑒𝑛𝑐 = Encode(𝑥1:𝑇)

𝛼𝑖,𝑡 = AttentionWeight ℎ𝑖−1
𝑑𝑒𝑐 , ℎ𝑡

𝑒𝑛𝑐 , 𝑡 = 1: 𝑇

𝑐𝑖 = Σ𝑡=1
𝑇 𝛼𝑖,𝑡ℎ𝑡

𝑒𝑛𝑐 , or 𝑠𝑖𝑚𝑝𝑙𝑦 𝑎𝑠, 𝑐𝑖 = Attend ℎ𝑖−1
𝑑𝑒𝑐 , ℎ1:𝑇

𝑒𝑛𝑐

ℎ𝑖
𝑑𝑒𝑐 = Decoder ℎ𝑖−1

𝑑𝑒𝑐 , 𝑦𝑖−1,𝑐𝑖

𝑦𝑖 = Generate 𝑦𝑖−1, ℎ𝑖
𝑑𝑒𝑐, 𝑐𝑖 , 𝑖 = 1,⋯ , 𝐿

Emerged first in the context of NMT, then applied to ASR
• D. Bahdanau, et al, “Neural machine translation by jointly learning to align and translate”, ICLR 2015.
• W. Chan, et al., "Listen, attend and spell: A neural network for large vocabulary conversational speech recognition", ICASSP 2016.
• J. Chorowski, et al., "Attention-based models for speech recognition", NIPS 2015.

𝑃 𝑦1:𝐿|𝑥1:𝑇 =ෑ
𝑖=1

𝐿

𝑃 𝑦𝑖|𝑥1:𝑇 , 𝑦1:𝑖−1

I.4 AED
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AED: basics



𝑥1 𝑥𝑡 𝑥𝑇⋯ ⋯

Encoder

ℎ1
𝑒𝑛𝑐 ℎ𝑡

𝑒𝑛𝑐 ℎ𝑇
𝑒𝑛𝑐⋯ ⋯

𝛼𝑖

𝑐𝑖

ℎ𝑖
𝑑𝑒𝑐ℎ𝑖−1

𝑑𝑒𝑐

𝑦𝑖−1 𝑦𝑖

𝑃 𝑦1:𝐿|𝑥1:𝑇 =ෑ
𝑖=1

𝐿

𝑃 𝑦𝑖|𝑥1:𝑇 , 𝑦1:𝑖−1

I.4 AED

 Encoder (analogous to AM):
• Transforms input speech into higher-

level representation

 Attention (alignment model):
• Identifies encoded frames that are 

relevant to producing current output

 Decoder (analogous to LM):
• Operates autoregressively by 

predicting each output token, as a 
function of the previous predictions

27

AED: intuition



𝑥1 𝑥𝑡 𝑥𝑇⋯ ⋯

Encoder

ℎ1
𝑒𝑛𝑐 ℎ𝑡

𝑒𝑛𝑐 ℎ𝑇
𝑒𝑛𝑐⋯ ⋯

𝛼𝑖

𝑐𝑖

ℎ𝑖
𝑑𝑒𝑐ℎ𝑖−1

𝑑𝑒𝑐

𝑦𝑖−1 𝑦𝑖

𝑃 𝑦1:𝐿|𝑥1:𝑇 =ෑ
𝑖=1

𝐿

𝑃 𝑦𝑖|𝑥1:𝑇 , 𝑦1:𝑖−1

Computational flow

I.4 AED

28

AED: shortcoming

• As directed sequential model /Auto-regressive 
model, AED potentially suffers from Label Bias 
and Exposure Bias

• AED is not streaming; there are efforts…

Graphical Model Representation

𝑦𝑖−1 𝑦𝑖

𝒙

𝑦𝑖+1
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I.5 RNNT



RNNT: introducing prediction network for labels

• Motivation: extending CTC by considering output-output dependencies

I.5 RNNT

• Introduce the prediction network, which attempts to model each output in 𝑦1:𝑈 given 
the previous ones

30A. Graves, “Sequence transduction with recurrent neural networks,” ICML 2012 Workshop on Representation Learning.

𝑥1 𝑥𝑡 𝑥𝑇⋯ ⋯

AM Encoder

𝑓1 𝑓𝑡 𝑓𝑇⋯ ⋯

P
red

ictio
n

 N
etw

o
rk

⋯
⋯

𝑦1

𝑦𝑢

𝑦𝑈

⋯
⋯

𝑔1

𝑔𝑢

𝑔𝑈

Joint Net

<s> 𝑔0
𝑦0 is the special token <s>

Defines the conditional output 
distribution at 𝑡, 𝑢 : 

𝐽𝑜𝑖𝑛𝑡𝑁𝑒𝑡(∙ |𝑡, 𝑢)
which is a softmax over 𝐾 + 1
units, including a blank 𝜙, 
and used to determine the state 
transition probabilities in a lattice.

In the original paper, 𝑓𝑡 , 𝑔𝑢 ∈ ℝ
𝐾+1

and 𝑓𝑡 + 𝑔𝑢 directly defines the 
logits for the softmax layer.



RNNT: introducing a new definition of path
I.5 RNNT

• Introduce the state sequence (a path) 𝝅 ≜ 𝜋1, ⋯ , 𝜋𝑇+𝑈 for input 𝑥1:𝑇 and output 𝑦1:𝑈
over a lattice

31A. Graves, “Sequence transduction with recurrent neural networks,” ICML 2012 Workshop on Representation Learning.

(1,2)

(1,1)

(2,2)

(2,1) (3,1)

(3,2) (𝑇, 2)

(𝑇, 1)

(2, 𝑈) (3, 𝑈) (𝑇, 𝑈)(1, 𝑈)

(1,0) (2,0) (3,0) (𝑇, 0)

𝑦1

𝑦2

𝑦𝑈

𝜙 𝜙 𝜙

𝐸𝑁𝐷
𝜙• Each state 𝜋𝑗 is a tuple 𝑡𝑗 , 𝑢𝑗 , 𝑜𝑗 , namely an arc

starting from 𝑡𝑗 , 𝑢𝑗 and associated with an output 

label 𝑜𝑗, either being 𝜙 or from  𝑦1:𝑈
• A path 𝝅 consists of 𝑇 horizontal and 𝑈 vertical arcs. 

𝑃 𝜋𝑗|𝜋1:𝑗−1 = 𝐽𝑜𝑖𝑛𝑡𝑁𝑒𝑡(𝑜𝑗|𝑡𝑗 , 𝑢𝑗) ≜ 𝑝
𝑡𝑗,𝑢𝑗

𝑜𝑗

𝑜𝑗 = ൝
𝑦𝑢𝑗+1 𝜋𝑗 𝑖𝑠 𝑣𝑒𝑟𝑡𝑖𝑐𝑎𝑙

𝜙 𝜋𝑗 𝑖𝑠 ℎ𝑜𝑟𝑖𝑧𝑜𝑛𝑡𝑎𝑙

𝑃 𝜋1:𝑇+𝑈|𝑥1:𝑇 =ෑ
𝑗=1

𝑇+𝑁

𝑃 𝜋𝑗|𝜋1:𝑗−1

Path posterior 



RNNT: label-seq posterior
I.5 RNNT

32A. Graves, “Sequence transduction with recurrent neural networks,” ICML 2012 Workshop on Representation Learning.

(1,2)

(1,1)

(2,2)

(2,1) (3,1)

(3,2) (𝑇, 2)

(𝑇, 1)

(2, 𝑈) (3, 𝑈) (𝑇, 𝑈)(1, 𝑈)

(1,0) (2,0) (3,0) (𝑇, 0)

𝑦1

𝑦2

𝑦𝑈

𝜙 𝜙 𝜙

𝐸𝑁𝐷
𝜙

𝑃 𝜋1:𝑇+𝑈|𝑥1:𝑇 =ෑ
𝑗=1

𝑇+𝑈

𝑃 𝜋𝑗|𝜋1:𝑗−1
Path posterior 

Label-seq posterior 

RNNT topology : a mapping ℬ𝑅𝑁𝑁𝑇 maps 𝝅 to 𝒚 by removing 
outputs from all horizontal transitions in 𝝅

Summing over all possible paths, which map to 𝑦1:𝑈

𝑃 𝑦1:𝑈|𝑥1:𝑇 = ෍

𝜋1:𝑇+𝑈: ℬ𝑅𝑁𝑁𝑇 𝜋1:𝑇+𝑈 =𝑦1:𝑈

𝑃 𝜋1:𝑇+𝑈|𝑥1:𝑇



RNNT: the gradient & the forward-backward algorithm
I.5 RNNT

𝜕𝑙𝑜𝑔𝑝 𝒚|𝒙

𝜕𝑧 𝑡,𝑢
𝑘 = 𝐸𝑝(𝝅|𝒙,𝒚)

𝜕𝑙𝑜𝑔𝑝 𝝅|𝒙

𝜕𝑧 𝑡,𝑢
𝑘

∵ Fisher Equality [Ou, arxiv 2018]

= 𝐸𝑝(𝝅|𝒙,𝒚)

𝜕𝑙𝑜𝑔𝑝
(𝑡𝑗,𝑢𝑗)

𝑜𝑗

𝜕𝑧 𝑡,𝑢
𝑘

=෍
𝑗=1

𝑇+𝑈

𝐸𝑝(𝝅|𝒙,𝒚) 𝛿 𝑡𝑗 = 𝑡, 𝑢𝑗 = 𝑢, 𝑜𝑗 = 𝑘 − 𝑝 𝑡,𝑢
𝑘

=෍
𝑗=1

𝑇+𝑈

𝑝(𝑡𝑗 = 𝑡, 𝑢𝑗 = 𝑢, 𝑜𝑗 = 𝑘|𝒙, 𝒚) − 𝑝 𝑡,𝑢
𝑘 i.e., the error signal received by the 

acoustic encoder NN during training

∵ 𝑝 𝝅| 𝒙 =ෑ

𝑗=1

𝑇+𝑈

𝑝
(𝑡𝑗,𝑢𝑗)

𝑜𝑗

i.e., 𝛾(𝑡,𝑢)
𝑘 , the posterior state occupation probability, calculated using the alpha-beta variables 

from the forward-backward algorithm [Rabiner, 1989]
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For logits 𝑧 𝑡,𝑢 ∈ ℝ𝐾+1 from 𝐽𝑜𝑖𝑛𝑡𝑁𝑒𝑡 ∙ 𝑡, 𝑢 , 1 ≤ 𝑡 ≤ 𝑇, 0 ≤ 𝑢 ≤ 𝑈

Providing easy derivation and giving insight, not appeared in [Graves, et al., 2006] and elsewhere

Z. Ou. "A Review of Learning with Deep Generative Models from Perspective of Graphical Modeling", arXiv, 2018.



RNNT: intuition
I.5 RNNT

34

(1,2)

(1,1)

(2,2)

(2,1) (3,1)

(3,2) (𝑇, 2)

(𝑇, 1)

(2, 𝑈) (3, 𝑈) (𝑇, 𝑈)(1, 𝑈)

(1,0) (2,0) (3,0) (𝑇, 0)

𝑦1

𝑦2

𝑦𝑈

𝜙 𝜙 𝜙

𝐸𝑁𝐷
𝜙

𝑥1 𝑥𝑡 𝑥𝑇⋯ ⋯

AM Encoder

𝑓1 𝑓𝑡 𝑓𝑇⋯ ⋯
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𝑦1

𝑦𝑢

𝑦𝑈

⋯
⋯

𝑔1

𝑔𝑢

𝑔𝑈

Joint Net

<s> 𝑔0

 Encoder (analogous to AM):

Transforms input speech into higher-
level representation

 Joint Net (Alignment model?):

Determines when to emit 
output tokens

 Prediction Net (analogous to LM?):

Operates over output tokens



RNNT: discussion
I.5 RNNT
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• AM encoder initialized from CTC-trained acoustic model: generally improves performance.

• PN initialized from recurrent LM: mixed results. Reported to be helpful in [Rao et al., 2017], but not 

• K. Rao, H. Sak, R. Prabhavalkar, "Exploring Architectures, Data and Units For Streaming End-to-End Speech Recognition 
with RNN-Transducer", ASRU, 2017.

• E. Variani, et al., "Hybrid Autoregressive Transducer (HAT)", ICASSP, 2020.
• M. Ghodsi, et al., "RNN-transducer with stateless prediction network", ICASSP 2020.

[E. Variani, et al., 2020] 
“PN decoder network deviates from being a language model.”
Feeding limited context in PN performs as good as infinite context.

[M. Ghodsi, et al., 2020]



RNNT: shortcoming
I.5 RNNT

36

• RNNT is more suitable for streaming recognition, but as directed sequential model /Auto-
regressive model, RNNT potentially suffers from Exposure Bias and Label Bias. A recent effort 
in [Cui, et al., 2021].

𝑃 𝜋1:𝑇+𝑈|𝑥1:𝑇 =ෑ
𝑗=1

𝑇+𝑈

𝑃 𝜋𝑗|𝜋1:𝑗−1

Graphical Model Representation

𝜋𝑗−1 𝜋𝑗

𝒙

𝜋𝑗+1

𝑃 𝑦1:𝑈|𝑥1:𝑇 =ෑ
𝑖=1

𝑈

𝑃 𝑦𝑖|𝑥1:𝑇 , 𝑦1:𝑖−1

Graphical Model Representation

𝑦𝑖−1 𝑦𝑖

𝒙

𝑦𝑖+1

Marginalize

X. Cui, et al., "Reducing Exposure Bias in Training Recurrent Neural Network Transducers", INTERSPEECH 2021.
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I.6 CRF



• Historically
• GMM-HMMs are generative models

• DNN-HMMs are interpreted as generative models (interpreting 𝑝 𝑥𝑡|𝜋𝑡 =
𝑝 𝜋𝑡|𝑥𝑡 𝑝 𝑥𝑡

𝑝 𝜋𝑡

as pseudo-likelihood), though strictly not

• A large body of works to improve GMM-HMMs and DNN-HMMs, by 
using sequence-discriminative criteria, like

• Maximum Mutual Information (MMI), boosted MMI (BMMI), Minimum Phone Error 
(MPE), Minimum Bayes Risk (MBR) [Karel, et al., 2013]

• Minimum Word Error Rate (MWER) [Stolcke, et al., 1997]

Sequence discriminative training

38

• V. Karel, et al., "Sequence-discriminative training of deep neural networks", INTERSPEECH 2013.
• A. Stolcke, et al., "Explicit word error minimization in N-best list rescoring", Eurospeech, 1997.

I.6 CRF



MMI and CML

39
• G. Heigold, et al., "Equivalence of generative and log-linear models", TASLP, 2011.
• D. Povey, et al., "Purely sequence-trained neural networks for ASR based on lattice-free MMI", INTERSPEECH 2016.

• MMI training of a GMM-HMM, for acoustic input 𝒙 and transcript 𝒚, is equivalent to 
CML (conditional maximum likelihood) training of a CRF (using 0/1/2-order features in 
potential definition) [Heigold, et al., 2011].

• LF-MMI: no division by the prior, uniform transition probabilities, using log-softmax prob. of states 

as the log of a pseudo-likelihood [Povey, et al., 2016]

• For the two manners - indirectly formulated as MMI training of a pseudo HMM [Povey, 
et al., 2016] or directly formulated as CML training of a CRF, it would be conceptually 
simpler to adopt the later manner.

𝐽𝑀𝑀𝐼 = 𝑙𝑜𝑔
𝑝 𝒙 | 𝒚

𝑝 𝒙
= 𝑙𝑜𝑔

𝑝 𝒚 | 𝒙

𝑝 𝒚
𝐽𝐶𝑀𝐿 = 𝑙𝑜𝑔𝑝 𝒚 | 𝒙

I.6 CRF



Conditional random field (CRF)

40

𝑦𝑖−1 𝑦𝑖

𝒙

𝑦𝑖+1

A CRF define a conditional distribution over output sequence 𝑦𝑙 given input sequence 𝑥𝑙

of length 𝑙 : 

Potential function:

• Lafferty, et al., "Conditional random fields: Probabilistic models for segmenting and labeling sequence data”, ICML 2001.
• A. Gunawardana, et al.,"Hidden conditional random fields for phone classification", Europspeech, 2005.

Node potential Edge potential

 CRFs was explored for phone classification, using zero, first and second 
order features [Gunawardana, et al., 2005]. 

 CRFs can overcome “label bias” and “exposure bias”, but are hard to be 
trained.

 CTC-CRF: the first CRF successfully developed for end-to-end ASR

I.6 CRF

Example of a linear-chain CRF



 Word probabilities at each time-step are locally normalized,  so successors of incorrect 
histories receive the same mass as do the successors of the true history. [Wiseman, et al., 2016]

Label bias [Lafferty, et al., 2001]

41
• Wiseman, et al., "Sequence-to-sequence Learning as Beam-Search Optimization", EMNLP, 2016.
• Andor, et al., "Globally Normalized Transition-Based Neural Networks", ACL, 2016.

I.6 CRF

 [Andor, et al., 2016]
• “Intuitively, we would like the model to be able to revise an earlier decision made during search, when 

later evidence becomes available that rules out the earlier decision as incorrect.” 
• “the label bias problem means that locally normalized models often have a very weak ability to revise 

earlier decisions.”
• A proof that globally normalized models are strictly more expressive than locally normalized models.

Tom likes tea
John likes tea
Alice like tea

Training data 

John

Alice

Tom

likes

like

tea

Correct history

Wrong history



Exposure bias

42

I.6 CRF

 Exposure bias results from training in a certain way, Label bias results from 
properties of the model itself.

 The model is never exposed to its own errors during training, and so the inferred 
histories at test-time do not resemble the gold training histories. [Wiseman, et al., 2016]

• Wiseman, et al., "Sequence-to-sequence Learning as Beam-Search Optimization", EMNLP, 2016.
• Andor, et al., "Globally Normalized Transition-Based Neural Networks", ACL, 2016.

 Mismatch between training (teacher forcing) and testing (prediction) of 
locally-normalized sequence models:

• Training: maximize the likelihood of each successive target word,
conditioned on the gold history of the target word.

• Testing: the model predict the next step, using its own predicted samples 
in testing.
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II.1 CTC-CRF
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• H. Xiang, Z. Ou. "CRF-based Single-stage Acoustic 
Modeling with CTC Topology", ICASSP, 2019.

• K. An, H. Xiang, Z. Ou. "CAT: A CTC-CRF based ASR 
Toolkit Bridging the Hybrid and the End-to-end 
Approaches towards Data Efficiency and Low 
Latency", INTERSPEECH, 2020.

• Fan, et al., "The SLT 2021 children speech 
recognition challenge: Open datasets, rules and 
baselines", SLT, 2021.

• H. Zheng, W. Peng, Z. Ou, J. Zhang. "Advancing 
CTC-CRF Based End-to-End Speech Recognition 
with Wordpieces and Conformers", 
arXiv:2107.03007, 2021.



• Current ASR: heavy reliance on supervised learning and large amounts of 
manually-labeled data

• Different from: computation-efficient (MIPS, million instructions per 
second), power-efficient (MIPS/Watt)

—— Efficiency of learning by machines

• A spectrum of data-efficient modeling and learning methods
 Model architecture

 unsupervised, semi-supervised, self-supervised learning

 Pre-training

 Transfer learning

 Active learning

 Meta-leaning 45

Data-efficient 𝐸𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑐𝑦 =
𝑃𝑒𝑟𝑓𝑜𝑟𝑚𝑎𝑛𝑐𝑒

𝐿𝑎𝑏𝑒𝑙𝑖𝑛𝑔 𝐶𝑜𝑠𝑡



• End-to-end system:
• Eliminate the construction of GMM-HMMs and phonetic decision-trees, and can be 

trained from scratch (flat-start or single-stage)

• In a more strict/ambitious sense:
• Remove the need for a pronunciation lexicon and, even further, train the acoustic and 

language models jointly rather than separately

• Data-hungry

Motivation: data-efficient end2end

We need data-efficient end2end speech recognition, which uses a separate 
language model (LM) with or without a pronunciation lexicon.

 Text corpus for language modeling are cheaply available.

 Data-efficient

46



Motivation: bridging
Modularization promote Data-efficiency

 Keep necessary factorization of AM and LM

47



CTC vs CTC-CRF
CTC CTC-CRF

𝑝 𝒚 𝒙 = σ𝝅:ℬ 𝝅 =𝒚𝑝(𝝅|𝒙), using CTC topology ℬ

State Independence

𝑝 𝝅 𝒙;𝜽 =ෑ

𝑡=1

𝑇

𝑝 𝜋𝑡 𝒙

𝜋𝑡−1 𝜋𝑡

𝒙

𝜋𝑡+1 𝜋𝑡−1 𝜋𝑡

𝒙

𝜋𝑡+1

Node potential, by NN

by n-gram denominator LM of labels, like in LF-MMI

𝑝 𝝅 𝒙; 𝜽 =
𝑒𝜙(𝝅,𝒙;𝜽)

σ𝝅′ 𝑒
𝜙(𝝅′,𝒙;𝜽)

𝜙 𝝅, 𝒙; 𝜽 =෍
𝑡=1

𝑇 log 𝑝 𝜋𝑡 𝒙
+ log𝑝𝐿𝑀 (ℬ(𝝅)) Edge potential,

𝜕log 𝑝 𝒚 𝒙; 𝜽

𝜕𝜽
= 𝔼𝑝(𝝅|𝒚,𝒙;𝜽)

𝜕log 𝑝 𝝅|𝒙; 𝜽

𝜕𝜽

𝜕log 𝑝 𝒚 𝒙; 𝜽

𝜕𝜽
= 𝔼𝑝(𝝅|𝒙,𝒚;𝜽)

𝜕𝜙 𝝅, 𝒙; 𝜽

𝜕𝜽
− 𝔼𝑝(𝝅′|𝒙;𝜽)

𝜕𝜙 𝝅′, 𝒙; 𝜽

𝜕𝜽

48



Related work

 Directed Graphical Model/Locally normalized

DNN-HMM : Model 𝑝 𝝅, 𝒙 as an HMM, could be 
discriminatively trained, e.g. by max

𝜽
𝑝𝜽 𝒚 | 𝒙

49

 Undirected Graphical Model/Globally normalized

𝜋𝑡−1

𝑥𝑡−1

𝜋𝑡

𝑥𝑡 𝑥𝑡+1

𝜋𝑡+1

𝜋𝑡−1 𝜋𝑡

𝒙

𝜋𝑡+1

Seq2Seq : 𝑝 𝒚 | 𝒙 = ς𝑖=1
𝐿 𝑝 𝑦𝑖|𝑦1, ⋯ , 𝑦𝑖−1, 𝒙

CRF

AED

DNN-HMM

CTC : 𝑝 𝝅| 𝒙 = ς𝑡=1
𝑇 𝑝 𝜋𝑡|𝒙

𝜋𝑡−1 𝜋𝑡

𝒙

𝜋𝑡+1

CTC

CRF : 𝑝 𝝅| 𝒙 ∝ 𝑒𝑥𝑝 𝜙 𝝅, 𝒙

RNNT : 𝑝 𝜋1:𝑇+𝑈|𝑥1:𝑇 = ς𝑗=1
𝑇+𝑈 𝑝 𝜋𝑗|𝜋1:𝑗−1

𝑦𝑖−1 𝑦𝑖

𝒙

𝑦𝑖+1

𝜋𝑗−1 𝜋𝑗

𝒙

𝜋𝑗+1

RNNT

CTC-CRF is fundamentally different from all history models!



Related work (SS-LF-MMI/EE-LF-MMI)

• Single-Stage (SS) Lattice-Free Maximum-Mutual-Information (LF-MMI)
 10 - 25% relative WER reduction on 80-h WSJ, 300-h Switchboard and 2000-h 

Fisher+Switchboard datasets, compared to CTC, Seq2Seq, RNN-T.

 Cast as MMI-based discriminative training of an HMM (generative model) with

Pseudo state-likelihoods calculated by the bottom DNN,

Fixed state-transition probabilities.

 2-state HMM topology

 Including a silence label

50Hadian, et al., “Flat-start single-stage discriminatively trained HMM-based models for ASR”, T-ASLP 2018.

CTC-CRF

 Cast as a CRF;

 CTC topology;

 No silence label.



SS-LF-MMI vs CTC-CRF

SS-LF-MMI CTC-CRF

State topology HMM topology with two states CTC topology

Silence label

Using silence labels. 

Silence labels are randomly inserted 
when estimating denominator LM.

No silence labels.  Use <blk> to absorb 
silence. 

 No need to insert silence labels to 
transcripts.

Decoding No spikes.
The posterior is dominated by <blk> and 

non-blank symbols occur in spikes.
 Speedup decoding by skipping blanks.

Implementation
Modify the utterance length to one 
of 30 lengths; use leaky HMM.

 No length modification; no leaky 
HMM.
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Experiments

• We conduct our experiments on three benchmark datasets: 
• WSJ 80 hours
• Switchboard 300 hours
• Librispeech 1000 hours

• Acoustic model: 6 layer BLSTM with 320 hidden dim, 13M parameters

• Adam optimizer with an initial learning rate of 0.001, decreased to 0.0001 when 
cv loss does not decrease

• Implemented with Pytorch.

• Objective function (use the CTC objective function to help convergences):
𝒥𝐶𝑇𝐶−𝐶𝑅𝐹 + 𝛼𝒥𝐶𝑇𝐶

• Decoding score function (use word-based language models, WFST based 
decoding):

log 𝑝 𝒍 𝒙 + 𝛽 log 𝑝𝐿𝑀(𝒍)

52H. Xiang, Z. Ou. "CRF-based Single-stage Acoustic Modeling with CTC Topology", ICASSP, 2019.



Experiments (Comparison with CTC, phone based)

Model Unit LM SP dev93 eval92

CTC Mono-phone 4-gram N 10.81% 7.02%

CTC-CRF Mono-phone 4-gram N 6.24% 3.90%

Model Unit LM SP SW CH

CTC Mono-phone 4-gram N 12.9% 23.6%

CTC-CRF Mono-phone 4-gram N 11.0% 21.0%

Model Unit LM SP Dev Clean Dev Other Test Clean Test Other

CTC Mono-phone 4-gram N 4.64% 13.23% 5.06% 13.68%

CTC-CRF Mono-phone 4-gram N 3.87% 10.28% 4.09% 10.65%

WSJ 80h

Switchboard 300h

Librispeech 1000h

44.4%

14.7%

SP: speed perturbation for 3-fold data augmentation.

19.1%

11%

22.1%
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Model SW CH Average Source

Kaldi chain triphone 9.6 19.3 14.5 IS 2016

Kaldi e2e chain monophone 11.0 20.7 15.9 ASLP 2018, 26M

Kaldi e2e chain biphone 9.8 19.3 14.6 ASLP 2018, 26M

CTC-CRF monophone 10.3 19.7 15.0 ICASSP 2019, BLSTM, 13M

CTC-CRF monophone 9.8 18.8 14.3 IS 2020, VGG BLSTM, 16M

DNN-HMM triphone 9.8 19.0 14.4 RWTH IS 2018

DNN-HMM triphone 9.6 19.3 14.5 IBM IS 2019

Seq2Seq subword 11.8 25.7 18.8 RWTH IS 2018, LSTM-LM

Seq2Seq subword 10.7 20.7 15.7 Espnet ASRU19

Experiments (Comparison with STOA)

Switchboard 300h

10%

RWTH IS 2018, “Improved training of end-to-end attention models for speech recognition”.
RWTH IS 2019, “RWTH ASR Systems for LibriSpeech Hybrid vs Attention -- Data Augmentation”.
IBM IS19, “Forget a Bit to Learn Better Soft Forgetting for CTC-based Automatic Speech Recognition”.
Espnet ASRU19, “Espresso: A Fast End-to-end Neural Speech Recognition Toolkit”.
Google IS19, “SpecAugment: A Simple Data Augmentation Method for Automatic Speech Recognition”.
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Model Test Clean Test Other Source

Kaldi chain triphone 4.28 - IS 2016

CTC-CRF monophone 4.0 10.6 ICASSP 2019, BLSTM (6,320), 13M

DNN-HMM triphone 4.4 10.0 RWTH IS 2019

Seq2Seq subword 4.8 15.3 RWTH IS 2018

Seq2Seq subword 4.0 12.0 Espnet ASRU19

Seq2Seq subword 4.1 12.5 Google IS19 (w/o SpecAugment)

Experiments (Comparison with STOA)

Librispeech 1000h

RWTH IS 2018, “Improved training of end-to-end attention models for speech recognition”.
RWTH IS 2019, “RWTH ASR Systems for LibriSpeech Hybrid vs Attention -- Data Augmentation”.
IBM IS19, “Forget a Bit to Learn Better Soft Forgetting for CTC-based Automatic Speech Recognition”.
Espnet ASRU19, “Espresso: A Fast End-to-end Neural Speech Recognition Toolkit”.
Google IS19, “SpecAugment: A Simple Data Augmentation Method for Automatic Speech Recognition”.
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Mandarin Aishell-1 results

• 170 hours mandarin speech corpus
• 400 speakers from different accent areas
• 15% CER reduction compared with LF-MMI
• 5% CER reduction compared with end-to-end transformer

[1] D. Povey, A. Ghoshal, and et al, “The Kaldi speech recognition toolkit,” ASRU 2011.
[2] S. Karita, N. Chen, and et al, “A comparative study on transformer vs RNN in speech applications,” ASRU 2019.
[3] Keyu An, Hongyu Xiang, and Zhijian Ou, “CAT: A CTC-CRF based ASR toolkit bridging the hybrid and the end-to-end 
approaches towards data efficiency and low latency,” INTERSPEECH 2020.

Model %CER

LF-MMI with i-vector [1] 7.43

Transformer [2] 6.7

CTC-CRF [3] 6.34
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• 400 hours of data, targeting to boost children speech recognition research.
• Evaluated on 10 hours of children’s reading and conversational speech.
• 3 baselines (Chain model, Transformer and CTC-CRF) are provided.

model Chain model Transformer CTC-CRF

CER% 28.75 27.28 25.34

Fan Yu, Zhuoyuan Yao, Xiong Wang, Keyu An, Lei Xie, Zhijian Ou, Bo Liu, Xiulin Li, Guanqiong Miao. The SLT 2021 
children speech recognition challenge: Open datasets, rules and baselines. SLT 2021. 57



Advancing CTC-CRF Based End-to-End Speech Recognition 
with Wordpieces and Conformers

Huahuan Zheng, Wenjie Peng, Zhijian Ou and Jinsong Zhang, arXiv:2107.03007
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Experiments (Comparison between different units, WER%)

Model Unit LM Augmentation Eval2000 SW CH

Conformer
(this work)

monophone 4-gram SP, SA 12.1 7.9 16.1

monophone Trans.* SP, SA 10.7 6.9 14.5

wordpiece 4-gram SP, SA 12.7 8.7 16.5

wordpiece Trans.* SP, SA 11.1 7.2 14.8

Model Unit LM Augmentation Test Clean Test Other

Conformer
(this work)

monophone 4-gram SA 3.61 8.10

monophone Trans.** SA 2.51 5.95

wordpiece 4-gram SA 3.59 8.37

wordpiece Trans.** SA 2.54 6.33

Switchboard 300h

Librispeech 1000h

SP: speed perturbation for 3-fold data augmentation.
SA: our implementation of SpecAug with ratio
* Latest Kaldi Transformer LM rescoring
** RWTH 42-layer Transformer

English: a low degree of grapheme-phoneme correspondence
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Model #params unit LM Augmentation Test 

Conformer
(This work)

25.03 char 4-gram SP, SA 12.7

25.03 char Trans. SP, SA 11.6

25.03 monophone 4-gram SP, SA 10.7

25.03 monophone Trans. SP, SA 10.0

25.06 wordpiece 4-gram SP, SA 10.5

25.06 wordpiece Trans. SP, SA 9.8

Experiments (Comparison between different units, WER%)
CommonVoice German 700h

German: a high degree of grapheme-phoneme correspondence
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Model #params LM unit SW CH Eval2000

RNN-T, 2021 [10] 57 RNN LM char 6.4 13.4 9.9

Conformer [9] 44.6 Trans. bpe 6.8 14.0 10.4

TDNN-F [11] - Trans.* triphone 7.2 14.4 10.8

TDNN-F [11] - Trans.** triphone 6.5 13.9 10.2

VGGBLSTM [2] 39.15 RNN LM monophone 8.8 17.4 [13.0]

Conformer
(This work)

51.82 Trans. monophone 6.9 14.5 10.7

51.85 Trans. wordpiece 7.2 14.8 11.1

Experiments (Comparison with STOA)

Switchboard 300h

* N-best rescoring, ** Iterative lattice rescoring

[2] “CAT: A CTC-CRF based ASR toolkit bridging the hybrid and the end-to-end approaches towards data efficiency and 
low latency,” INTERSPEECH 2020.
[9] “Conformer: Convolution-augmented Transformer for Speech Recognition”, Interspeech 2020.
[10] “Advancing RNN transducer technology for speech recognition,” ICASSP 2021.
[11] “A paralleliz- able lattice rescoring strategy with neural language models,” ICASSP, 2021 
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Section Conclusion

• The CTC-CRF framework inherits the data-efficiency of the hybrid approach 
and the simplicity of the end-to-end approach. 

• CTC-CRF significantly outperforms regular CTC on a wide range of 
benchmarks, and is on par with other state-of-the-art end-to-end models.
 English WSJ-80h, Switchboard-300h, Librispeech-1000h; Mandarin Aishell-170h; …

• Flexibility
 Streaming ASR <- INTRESPEECH 2020

 Neural Architecture Search <- SLT 2021

 Children Speech Recognition <- SLT 2021

 Wordpieces, Conformer architectures

 Multilingual and Crosslingual <- ASRU2021

 …

62https://github.com/thu-spmi/cat

https://github.com/thu-spmi/cat
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I. Basics for end-to-end speech recognition
1. Probabilistic graphical modeling (PGM) framework
2. Classic hybrid DNN-HMM models
3. Connectionist Temporal Classification (CTC)
4. Attention based encoder-decoder (AED)
5. RNN transducer (RNNT)
6. Conditional random fields and sequence discriminative training

II. Improving end-to-end speech recognition
1. Data-efficiency
2. Neural architecture search
3. Multilingual and crosslingual ASR
4. Language modeling

III. Open questions and future directions

15-minute break



Section Content

1.Motivation

2.Related work

3.Method: ST-NAS

4.Experiments

5.Conclusion

• H. Zhen, K. An, Z. Ou. “Efficient Neural Architecture Search for End-to-end Speech Recognition via 
Straight-Through Gradients”, SLT 2021.
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Motivation

controller evaluator

1. Early NAS methods

2. Recent gradient-based NAS methods 

(DARTS, SNAS, ProxylessNAS)

3. (ours) Straight-Through gradient NAS (ST-NAS)

• End-to-end ASR reduces expert efforts by automating feature engineering, but raises 

a demand for architecture engineering.

• Neural architecture search (NAS), the process of automating architecture 

engineering, is an appealing next step to advancing end-to-end ASR.

computation expensive,

1000+ GPU days 

Improved, 

but still memory expensive (DARTS, SNAS),

or using ad-hoc trick (ProxylessNAS) 

Back-Prop ST gradients through the sampled edge,

Efficient in both memory and computation, 

Less than 3-fold computation time 

forward backward
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Gradient-based NAS: representing the search space as 

a weighted directed acyclic graph (DAG)

Ω𝑖1𝑗(⋅)
𝑥𝑖1 𝑥𝑗

Ω𝑖2𝑗(⋅)
𝑥𝑖2

Ω𝑖𝐴𝑗(⋅)𝑥𝑖𝐴

······

𝓐𝒋

NN architecture as graph

directed edge: 

an operation (OP)

Ω𝑖𝑗(⋅)

intermediate 

features

Forward computation in general

The DAG of NAS: "supernet"

candidate

operations architecture weight

OP1

OP2

OP3

OP1

OP2

OP3

OP1

OP2

OP3

OP1

OP3

OP2

The sampled sub-graph
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Related work: DARTS, SNAS and ProxylessNAS

[1] H Liu, K Simonyan, and Y Yang, “DARTS: Differentiable architecture search,” in ICLR, 2019.

[2] S Xie, H Zheng, et al, “SNAS: stochastic neural architecture search,” in ICLR, 2019.

[3] H Cai, L Zhu, and S Han, “ProxylessNAS: Direct neural architecture search on target task and hardware,” 

in ICLR, 2019.

[4] E Jang, S Gu, and B Poole, “Categorical reparameterization with Gumbel-Softmax,” in ICLR, 2017.

[5] M Courbariaux, Y Bengio, and J David, “BinaryConnect: training deep neural networks with binary weights 

during propagations,” NIPS, 2015.

ProxylessNAS

The loss is not explicitly 

shown in the original paper

SNAS

Same as DARTS

DARTS

Definition

Limitation
Continuous relaxation;

Require 𝐾 × memory and time

Ideally

0

1

0

is one-hot vector
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ST (Straight-Through) NAS

Y Bengio, N Leonard, and A Courville, “Estimating or propagating gradients through stochastic neurons for conditional 

computation,” arXiv 2013.

forward

backward

Comparison of different gradient-based NAS methods. 
• Computation costs are estimated relative to 

training a single model.

• 𝐶1 : the memory size for training a single model.

• 𝐶2 : the average memory size for storing the 

output features for all connected pairs of nodes 

in a sub-graph. Usually we have 𝐶2 ≪ 𝐶1 .

continous relaxation

Using ST gradients to support sub-graph sampling is key to achieve efficient NAS beyond DARTS and SNAS.

straight-through gradient SNAS DARTS
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ST-NAS: overview

Objective: 

sampled sub-graphMonte Carlo estimation

warmup

search

retrain

ST-NAS procedure

*

freeze 

alternately update

OP1

OP2

OP3

NN parameters architecture weights 
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Experiments: ASR system

Audio Feature

Acoustic

Model

CTC/CTC-CRF

lossSettings:

1. Datasets: 80-hour WSJ and 300-hour 

Switchboard.

2. LM: n-gram model.

3. Loss: CTC/CTC-CRF based on CAT [1].

4. Candidate operations:
• TDNN-1-1 (-{C}-{D})

• TDNN-1-2

• TDNN-2-1

• TDNN-2-2

• TDNN-3-1 (Switchboard)

• TDNN-3-2 (Switchboard)

5. Search space:

• WSJ: 46 = 𝟒𝟎𝟗𝟔

• Switchboard: 66 ≈ 𝟒𝟕𝟎𝟎𝟎

Overview of

training framework
Backbone of supernet

[1] K An, H Xiang, and Z Ou, “CAT: A CTC-CRF based ASR toolkit bridging the hybrid and the 

end-to-end approaches towards data efficiency and low latency,” INTERSPEECH, 2020.

input

output

half of context 

dilation

FC

Subsampling

𝑥8

𝑥0

𝑥1

𝑥2

𝑥3

𝑥4

𝑥5

𝑥6

𝑥7

searching

block

Conditional Random Field
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Experiments: WSJ

The red lines indicate one of the derived single model from the 5 runs of NAS on WSJ.

The evolution of architecture probabilities for the searching blocks in the NAS run that 

yields the derived single model above.
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Experiments: results on WSJ

Methods eval92 dev93

EE-Policy-CTC [1] 5.53 9.21

SS-LF-MMI [2] 3.0 6.0

EE-LF-MMI [3] 3.0 -

FC-SR [4] 3.5 6.8

ESPRESSO [5] 3.4 5.9

CTC
BLSTM 4.93 8.57

ST-NAS 4.72±0.03 8.82±0.07

CTC-CRF

BLSTM [6] 3.79 6.23

VGG-BLSTM [7] 3.2 5.7

TDNN-D* [8] 2.91 6.24

Random search 2.82±0.01 5.71±0.03

ST-NAS 2.77±0.00 5.68±0.01

ST-NAS with fully CTC-CRF 2.81±0.01 5.74±0.02

WERs on the WSJ.

[1] Y Zhou, C Xiong, et al, “Improving end-to-end speech recognition with 

policy learning,” ICASSP, 2018.

[2] H Hadian, H Sameti, et al, “Flat-start single-stage discriminatively 

trained HMM-Based models for ASR,” TASLP, 2018. 

[3] H Hadian, H Sameti, et al, “End-to-end speech recognition using 

lattice-free MMI,” INTERSPEECH, 2018.

[4] N Zeghidour, Q Xu, et al, “Fully convolutional speech recognition,” 

arXiv preprint arXiv:1812.06864, 2018.

[5] Y Wang, T Chen, et al, “Espresso: A fast endto-end neural speech 

recognition toolkit,”  ASRU, 2019.

[6] H Xiang and Z Ou, “CRF-based single-stage acoustic modeling with 

CTC topology,” ICASSP, 2019.

[7] K An, H Xiang, et al, “CAT: A CTC-CRF based ASR toolkit bridging the 

hybrid and the end-to-end approaches towards data efficiency and low 

latency,” INTERSPEECH, 2020.

[8] V Peddinti, Y Wang, et al, “Low latency acoustic modeling using 

temporal convolution and LSTMs,” IEEE SPL, 2018.
* Obtained based on our implementation of the “TDNN-D” in [8].

outperforming all other end-to-end ASR models
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Methods eval92 dev93

EE-Policy-CTC [1] 5.53 9.21

SS-LF-MMI [2] 3.0 6.0

EE-LF-MMI [3] 3.0 -

FC-SR [4] 3.5 6.8

ESPRESSO [5] 3.4 5.9

CTC
BLSTM 4.93 8.57

ST-NAS 4.72±0.03 8.82±0.07

CTC-CRF

BLSTM [6] 3.79 6.23

VGG-BLSTM [7] 3.2 5.7

TDNN-D* [8] 2.91 6.24

Random search 2.82±0.01 5.71±0.03

ST-NAS 2.77±0.00 5.68±0.01

ST-NAS with fully CTC-CRF 2.81±0.01 5.74±0.02

* Obtained based on our implementation of the “TDNN-D” in [8].

Better performance with lighter model,

under the same CTC-CRF loss

Experiments: results on WSJ

WERs on the WSJ.

[1] Y Zhou, C Xiong, et al, “Improving end-to-end speech recognition with 

policy learning,” ICASSP, 2018.

[2] H Hadian, H Sameti, et al, “Flat-start single-stage discriminatively 

trained HMM-Based models for ASR,” TASLP, 2018. 

[3] H Hadian, H Sameti, et al, “End-to-end speech recognition using 

lattice-free MMI,” INTERSPEECH, 2018.

[4] N Zeghidour, Q Xu, et al, “Fully convolutional speech recognition,” 

arXiv preprint arXiv:1812.06864, 2018.

[5] Y Wang, T Chen, et al, “Espresso: A fast endto-end neural speech 

recognition toolkit,”  ASRU, 2019.

[6] H Xiang and Z Ou, “CRF-based single-stage acoustic modeling with 

CTC topology,” ICASSP, 2019.

[7] K An, H Xiang, et al, “CAT: A CTC-CRF based ASR toolkit bridging the 

hybrid and the end-to-end approaches towards data efficiency and low 

latency,” INTERSPEECH, 2020.

[8] V Peddinti, Y Wang, et al, “Low latency acoustic modeling using 

temporal convolution and LSTMs,” IEEE SPL, 2018.
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Methods eval92 dev93

EE-Policy-CTC [1] 5.53 9.21

SS-LF-MMI [2] 3.0 6.0

EE-LF-MMI [3] 3.0 -

FC-SR [4] 3.5 6.8

ESPRESSO [5] 3.4 5.9

CTC
BLSTM 4.93 8.57

ST-NAS 4.72±0.03 8.82±0.07

CTC-CRF

BLSTM [6] 3.79 6.23

VGG-BLSTM [7] 3.2 5.7

TDNN-D* [8] 2.91 6.24

Random search 2.82±0.01 5.71±0.03

ST-NAS 2.77±0.00 5.68±0.01

ST-NAS with fully CTC-CRF 2.81±0.01 5.74±0.02

* Obtained based on our implementation of the “TDNN-D” in [8].

Better than strong baseline.

Experiments: results on WSJ

WERs on the WSJ.

[1] Y Zhou, C Xiong, et al, “Improving end-to-end speech recognition with 

policy learning,” ICASSP, 2018.

[2] H Hadian, H Sameti, et al, “Flat-start single-stage discriminatively 

trained HMM-Based models for ASR,” TASLP, 2018. 

[3] H Hadian, H Sameti, et al, “End-to-end speech recognition using 

lattice-free MMI,” INTERSPEECH, 2018.

[4] N Zeghidour, Q Xu, et al, “Fully convolutional speech recognition,” 

arXiv preprint arXiv:1812.06864, 2018.

[5] Y Wang, T Chen, et al, “Espresso: A fast endto-end neural speech 

recognition toolkit,”  ASRU, 2019.

[6] H Xiang and Z Ou, “CRF-based single-stage acoustic modeling with 

CTC topology,” ICASSP, 2019.

[7] K An, H Xiang, et al, “CAT: A CTC-CRF based ASR toolkit bridging the 

hybrid and the end-to-end approaches towards data efficiency and low 

latency,” INTERSPEECH, 2020.

[8] V Peddinti, Y Wang, et al, “Low latency acoustic modeling using 

temporal convolution and LSTMs,” IEEE SPL, 2018.
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Methods eval92 dev93

EE-Policy-CTC [1] 5.53 9.21

SS-LF-MMI [2] 3.0 6.0

EE-LF-MMI [3] 3.0 -

FC-SR [4] 3.5 6.8

ESPRESSO [5] 3.4 5.9

CTC
BLSTM 4.93 8.57

ST-NAS 4.72±0.03 8.82±0.07

CTC-CRF

BLSTM [6] 3.79 6.23

VGG-BLSTM [7] 3.2 5.7

TDNN-D* [8] 2.91 6.24

Random search 2.82±0.01 5.71±0.03

ST-NAS 2.77±0.00 5.68±0.01

ST-NAS with fully CTC-CRF 2.81±0.01 5.74±0.02

* Obtained based on our implementation of the “TDNN-D” in [8].

Architectures searched with CTC are 

transferable to be retrained with CTC-CRF.

Experiments: results on WSJ

WERs on the WSJ.

[1] Y Zhou, C Xiong, et al, “Improving end-to-end speech recognition with 

policy learning,” ICASSP, 2018.

[2] H Hadian, H Sameti, et al, “Flat-start single-stage discriminatively 

trained HMM-Based models for ASR,” TASLP, 2018. 

[3] H Hadian, H Sameti, et al, “End-to-end speech recognition using 

lattice-free MMI,” INTERSPEECH, 2018.

[4] N Zeghidour, Q Xu, et al, “Fully convolutional speech recognition,” 

arXiv preprint arXiv:1812.06864, 2018.

[5] Y Wang, T Chen, et al, “Espresso: A fast endto-end neural speech 

recognition toolkit,”  ASRU, 2019.

[6] H Xiang and Z Ou, “CRF-based single-stage acoustic modeling with 

CTC topology,” ICASSP, 2019.

[7] K An, H Xiang, et al, “CAT: A CTC-CRF based ASR toolkit bridging the 

hybrid and the end-to-end approaches towards data efficiency and low 

latency,” INTERSPEECH, 2020.

[8] V Peddinti, Y Wang, et al, “Low latency acoustic modeling using 

temporal convolution and LSTMs,” IEEE SPL, 2018.
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Experiments: results on Switchboard

Methods SW CH Params

TDNN-D-Small 15.2 26.8 7.64M

TDNN-D-Large 14.6 25.5 11.85M

ST-NAS
Transferred from WSJ 12.5 23.2 11.89M

Searched on Switchboard 12.6 23.2 15.98M

WERs on the Switchboard.

1. All experiments are trained with CTC-CRF. TDNN-D-Small is with the hidden size of 640, 

which is the same as that of our searched models. TDNN-D-Large is with the hidden size of 800.

2. The transferred model is randomly taken from one of the 5 runs of NAS with CTC over WSJ, 

and retrained on Switchboard.

The architecture searched in WSJ 

is transferable to Switchboard.
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Section Conclusion

1. We review existing gradient-based NAS methods and develop an 

efficient NAS method via Straight-Through gradients (ST-NAS).

2. We successfully apply ST-NAS to end-to-end ASR. Our ST-NAS 

induced architectures significantly outperform the human-designed 

architecture across the WSJ and Switchboard datasets. 

3. The ST-NAS method is flexible and can be further explored with 

various backbones of the supernet and candidate operations.

NAS is an appealing next step to advancing end-to-end ASR.
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Motivation
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• There are more than 7100 languages in the world, and most of them are 
low-resourced languages.

• Multilingual speech recognition
 Training data from a number of languages (seen languages) are merged to train a 

multilingual AM.

• Crosslingual speech recognition
 The target language is unseen in training the multilingual AM.

 In few-shot setting , the AM can be finetuned on limited target language data. 

 In zero-shot setting , the AM is directly used without finetuning*.
* Suppose that text corpus from the target language are available.

Intuitively, the key to successful multilingual and crosslingual recognition is 
to promote the information sharing in multilingual training 

and maximize the knowledge transferring from the well trained multilingual model to the model 
for recognizing the utterances in the new language.



Universal Phone Set
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• International Phonetic Alphabet (IPA)

• Often phones are seen as being the 
“atoms” of speech. But it is now widely 
accepted in phonology that phones are 
decomposable into smaller, more 
fundamental units, sharable across all 
languages, called phonological 
(distinctive) features.



Phonological features
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Describe phones by phonological features

 Vowels
• vowel height

• vowel backness

 Consonants
• Place of articulation

• Manner of articulation



Phonological features: micro-decomposition of phones
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Matter Speech

Atoms Phones

Periodic table of elements IPA table

Nucleus, electrons Phonological features

• Like atoms could be split into nucleus and electrons, phones can be 
expressed by phonological features.



Phonological features: promote information sharing
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• Even language-specific phones are connected by using phonological features.



Related work
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• Phonological features(PFs) have been applied in multilingual and crosslingual ASR

• Previous studies generally take a bottom-up approach, 
and suffer from:

• The acoustic-to-PF extraction in a bottom-up way is itself
difficult. 

• Do not provide a principled model to calculate the phone 
probabilities for unseen phones from the new language 
towards zero-shot crosslingual recognition.

Acoustic spectra

Phonological feature extractor

𝑣𝑜𝑖𝑐𝑖𝑛𝑔 ℎ𝑖𝑔ℎ ⋯⋯ ⋯
Phonological feature posteriors 

Standard acoustic model

Feature concatenation, or 
Model combination

Phone probabilities



From phonological features to phonological-vector
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• Phonological-vector
 Encode each phonological feature by a 2-bit binary vector. (24PFs -> 48bits)

 Plus 3 bits to indicate <blk>, <spn>, <nsn> 

 Phonological-vector: Total 51 bits 

+ - 0

10 01 00



Joining of Acoustics and Phonology (JoinAP)
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• The JoinAP method
 DNN based acoustic feature extraction (bottom-up) 

and phonology driven phone embedding (top-down) 
are joined to calculate the logits.

• JoinAP-Linear

 Linear transformation of phonological-vector 𝑝𝑖 to define 
the embedding vector for phone 𝑖:

𝑒𝑖 = 𝐴𝑝𝑖 ∈ ℝ𝐻

 Apply nonlinear transformation, multilayered neural networks: 
𝑒𝑖 = 𝐴2𝜎(𝐴1𝑝𝑖) ∈ ℝ𝐻

• JoinAP-Nonlinear
Acoustic spectra

DNN based feature extractor

Phone

Phonological transformation

Phone embedding 𝑒𝑖

DNN output ℎ𝑡

Logits: 𝒛𝒕,𝒊 = 𝒆𝒊
𝑻𝒉𝒕



Experiments
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• Train multilingual AM on German, French, Spanish and Polish.

• Zero-shot and few-shot crosslingual ASR on Polish and Mandarin.

• Employ Phonetisaurus G2P to generate IPA lexicons

• Use CTC-CRF based ASR toolkit, CAT
• Acoustic model: 3 layer VGGBLSTM with 1024 hidden dim

• Adam optimizer: with an initial learning rate of 0.001, decreased to 1/10 until less than 0.00001  

• Dropout 0.5



Experiments

89

• Multilingual experiments 

• Language-degree of a phone: how many languages a phone appears

On average, both JoinAP-Nonlinear and  JoinAP-Linear perform better than Flat-Phone, 
and JoinAP-Nonlinear is the strongest.



Experiments
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• Crosslingual experiments
 Polish:  Mandarin:

 Statistics about Polish and Mandarin:

On average, both JoinAP-Nonlinear and  JoinAP-Linear perform better than Flat-Phone, 
and JoinAP-Nonlinear is the strongest.



Experiments
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• t-SNE map of Polish phone embeddings
(obtained from un-finetuned multilingual models)

(a) Flat phone embeddings, (b) JoinAP-Linear phone embeddings, (c) JoinAP- Nonlinear phone embeddings.
Consonants with the same manner of articulation
Consonants with the same place of articulation
Vowel with similar height



Section Conclusion
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• In the multilingual and crosslingual experiments, JoinAP-Nonlinear generally
performs better than JoinAP-Linear and the traditional flat-phone method on
average. The improvements for target language depend on its data amount and 
language-degree.

• Our JoinAP method provides a principled, data-efficent approach to 
multilingual and crosslingual speech recognition.

• Promising directions: exploring DNN based phonological transformation, and 
pretraining over increasing number of languages. 
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Random Fields with Applications to Language Modeling. TPAMI, 
2018.

• Bin Wang, Zhijian Ou. Language modeling with neural trans-
dimensional random fields. ASRU, 2017.

• Bin Wang, Zhijian Ou.  Learning neural trans-dimensional random 
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2018. 

• Bin Wang, Zhijian Ou. Improved training of neural trans-dimensional 
random field language models with dynamic noise-contrastive 
estimation. SLT, 2018.

• Silin Gao, Zhijian Ou, Wei Yang, Huifang Xu. Integrating discrete and 
neural features via mixed-feature trans-dimensional random field 
language models. ICASSP, 2020. [Oral]



N-gram LMs

• Language modeling (LM) is to determine the joint probability of a 
sentence, i.e. a word sequence.

• Dominant: Directed modeling approach
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𝑝 𝑥1, 𝑥2, ⋯ , 𝑥𝑙 =ෑ

𝑖=1

𝑙

𝑝 𝑥𝑖|𝑥1, ⋯ , 𝑥𝑖−1

≈ෑ

𝑖=1

𝑙

𝑝 𝑥𝑖|𝑥𝑖−𝑛+1, ⋯ , 𝑥𝑖−1

Current word All previous words/history

Previous 𝑛 − 1 words

• Using Markov assumption leads to the N-gram LMs

– One of the state-of-the-art LMs



Recurrent Neural Nets (RNNs)/LSTM/Transformer LMs
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𝑝 𝑥𝑖|𝑥1, ⋯ , 𝑥𝑖−1 ≈ 𝑝 𝑥𝑖|ℎ𝑖−1 𝑥1, ⋯ , 𝑥𝑖−1 ≈
ℎ𝑖−1
𝑇 𝑤𝑘

σ𝑘=1
𝑉 ℎ𝑖−1

𝑇 𝑤𝑘

.1 Computational expensive in both training and testing 1

e.g. 𝑉 = 104~106, 𝑤𝑘 ∈ ℝ250~1024

1 Partly alleviated by using un-normalized models (e.g., through NCE) or a small set of tokens (e.g., BPE).

ℎ𝑖−1

𝑥𝑖−1

ℎ𝑖

𝑥𝑖 𝑥𝑖+1

ℎ𝑖+1

⋯

⋯

⋯

⋯

.2 As directed sequential model /Auto-regressive model, potentially 
suffers from Exposure Bias and Label Bias



Trans-dimensional Random Field (TRF) LM: motivation
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𝑝𝜃 𝑥𝑙 =
1

𝑍𝑙 𝜃
𝑒𝑢𝜃 𝑥𝑙 , 𝑥𝑙 ≜ 𝑥1, 𝑥2, ⋯ , 𝑥𝑙

.2 Flexible

Discrete features

CNN features

BLSTM features

.1 Avoid local normalization



Trans-dimensional random fields (TRFs): model

• Assume the sentences of length 𝒍 are distributed as follows:

𝑝𝑙 𝑥
𝑙; 𝜆 =

1

𝑍𝑙 𝜆
𝑒𝜆

𝑇𝑓 𝑥𝑙 𝑙 = 1, … , 𝑙𝑚𝑎𝑥

𝑥𝑙 ≜ 𝑥1, 𝑥2, ⋯ , 𝑥𝑙 is a word sequence with length 𝑙;

𝑓 𝑥𝑙 = 𝑓1 𝑥𝑙 , … , 𝑓𝑑 𝑥𝑙
𝑇

is the feature vector;

𝜆 = 𝜆1, … , 𝜆𝑑
𝑇 is the parameter vector;

𝑍𝑙 𝜆 = σ
𝑥𝑙 𝑒

𝜆𝑇𝑓 𝑥𝑙 is the normalization constant. 
Needed to be estimated

• Assume length 𝒍 is associated with priori probability 𝝅𝒍. Therefore 

the pair (𝒍, 𝒙𝒍) is jointly distributed as:

𝑝 𝑙, 𝑥𝑙; 𝜆 = 𝜋𝑙 ∙ 𝑝𝑙 𝑥
𝑙; 𝜆 99



Feature definition

• 𝑓𝑖 𝑥
𝑙 returns the count of a specific phrase observed in the input sentence 𝑥𝑙
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𝑝𝑙 𝑥
𝑙; 𝜆 =

1

𝑍𝑙 𝜆
𝑒𝜆

𝑇𝑓 𝑥𝑙

𝑥𝑙 = he is a teacher and he is also a good father.

𝑓ℎ𝑒 𝑖𝑠 𝑥𝑙 = count of “he is” observed in 𝑥𝑙 = 2

𝑓𝑎 𝑡𝑒𝑎𝑐ℎ𝑒𝑟 𝑥𝑙 = count of “a teacher” observed in 𝑥𝑙 = 1

𝑓𝑠ℎ𝑒 𝑖𝑠 𝑥𝑙 = count of “she is” observed in 𝑥𝑙 = 0

……

• For example, n-grams and skip n-grams (tied or not) of orders ranging from 1 
to 10, observed in the training set are added to the features.



Review the development of TRF LMs

101

ACL-2015 
TPAMI-2018

• Discrete features 
• Augmented stochastic approximation (AugSA) for model training

ASRU-2017 • Potential function as a deep CNN. 
• Model training by AugSA plus JSA (joint stochastic approximation)

ICASSP-2018 • Use LSTM on top of CNN
• NCE is introduced to train TRF LMs

SLT-2018 • Simplify the potential definition by using only Bidirectional LSTM
• Propose Dynamic NCE for improved model training



Model training

• The target RF model
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𝑝𝜃 𝑥 =
1

𝑍 𝜃
𝑒𝑢𝜃 𝑥

• Treat log𝑍 𝜃 as a parameter 𝜁 and rewrite 𝑝𝜃,𝜁 𝑥 ∝ 𝑒𝑢𝜃 𝑥 −𝜁

• Introduce a noise distribution 𝑞𝑛 𝑥 , and consider a binary classification

𝑃 𝐶 = 0|𝑥 =
𝑝𝜃,𝜁 𝑥

𝑝𝜃,𝜁 𝑥 + 𝜈𝑞𝑛 𝑥
, 𝑤ℎ𝑒𝑟𝑒 𝜈 =

𝑃 𝐶 = 1

𝑃 𝐶 = 0

𝑃 𝐶 = 1|𝑥 = 1 − 𝑃 𝐶 = 0|𝑥

max
𝜃,𝜁

𝐸𝑥∼𝑝0 𝑥 log 𝑃 𝐶 = 0|𝑥 + 𝐸𝑥∼𝑞𝑛 𝑥 log 𝑃 𝐶 = 1|𝑥

• Noise Contrastive Estimation (NCE):

 𝑝𝜃 → 𝑝0 (oracle), under infinite amount of data and infinite capacity of 𝑝𝜃.

 Reliable NCE needs a large 𝜈 ≈ 20; Overfitting. Dynamic-NCE in (Wang&Ou, SLT 2018).

𝑥𝑙 ∼ 𝑝0

𝑥𝑙 ∼ 𝑝𝑛

𝐶 = 0

𝐶 = 1

Binary 

discriminator



Motivation: Integrating discrete and neural features
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• Language models using discrete features (N-gram LMs, Discrete TRF LMs)

 Mainly capture local lower−order interactions between words

 Better suited to handling symbolic knowledges

• Language models using neural features (LSTM LMs, Neural TRF LMs)

 Able to learn higher-order interactions between words

 Good at learning smoothed regularities due to word embeddings

• Interpolation of LMs1, 2: usually achieves further improvement

 Discrete and neural features have complementary strength.

 Two-step model training is sub-optimal.

1Xie Chen, Xunying Liu, Yu Wang, Anton Ragni, Jeremy HM Wong, and Mark JF Gales, “Exploiting future word contexts in neural network language 
models for speech recognition,” IEEE/ACM Transactions on Audio, Speech, and Language Processing, vol. 27, no. 9, pp. 1444–1454, 2019.

2Bin Wang, Zhijian Ou, Yong He, and Akinori Kawamura, “Model interpolation with trans-dimensional random field language models for speech 
recognition,” arXiv preprint arXiv:1603.09170, 2016.



Mixed TRF LMs: Definition
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• Mixed TRF LMs:

 𝑝 𝑙, 𝑥𝑙; 𝜂 =
𝜋𝑙

𝑍𝑙 𝜂
𝑒𝑉 𝑥𝑙,𝜂 , 𝑉 𝑥𝑙 , 𝜂 = 𝜆𝑇𝑓 𝑥𝑙 + 𝜙 𝑥𝑙; 𝜃 , 𝜂 = (𝜆, 𝜃)

Discrete n-gram features, with parameter 𝜆: Neural network features, with parameter 𝜃

𝑓 𝑥𝑙 = 𝑓1(𝑥
𝑙), 𝑓2(𝑥

𝑙),⋯ , 𝑓𝑁(𝑥
𝑙)

𝜙 𝑥𝑙; 𝜃 =෍

𝑖=1

𝑙−1

ℎ𝑓,𝑖
𝑇𝑒𝑖+1 +෍

𝑖=2

𝑙

ℎ𝑏,𝑖
𝑇𝑒𝑖−1

𝑓𝑘(𝑥
𝑙) = 𝑐

where 𝑐 is the count of the 𝑘th n-gram type in 𝑥𝑙

𝑁: the total number of types of n-grams

𝑥𝑙 = he is a teacher and he is also a good father.

𝑓ℎ𝑒 𝑖𝑠 𝑥𝑙 = count of “he is” in 𝑥𝑙 = 2

𝑓𝑎 𝑡𝑒𝑎𝑐ℎ𝑒𝑟 𝑥𝑙 = count of “a teacher” in 𝑥𝑙 = 1



Experiments: PTB dataset
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WER curves of the three TRF LMs during the first 100 training epochs:

 Mixed TRF converges faster than 
the state-of-the-art Neural TRF, 
using only 58% training epochs.

 The discrete features in Mixed 
TRF lower the non-convexity of 
the optimal problem, and reduce 
the amount of patterns for neural 
features to capture.



On Google one-billion word benchmark
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Training: Google One-Billion word benchmark, 0.8 billion words, 568K vocabulary
Testing: WSJ’92 test data, 330 utterances, rescoring 1000-best lists

Model WER (%) #Param (M) Training time Inference Time

KN5 6.13 133 2.5  h (1 CPU) 0.491 s (1 CPU)

LSTM-2x1024 5.55 191 144 h (2 GPUs) 0.909 s (2 GPUs)

discrete-TRF basic 6.04 102 131 h (8 cores and 2 GPUs) 0.022 s (1 CPU)

neural-TRF 5.47 114 336 h (2 GPUs) 0.017 s (2 GPUs)

mix-TRF 5.28 216 297 h (8 cores and 2 GPUs) 0.024 s (1 core and 2 GPUs)

LSTM-2x1024+KN5 5.38 324

5% 38x

Open-source LM toolkit
https://github.com/thu-spmi/SPMILM

33%

https://github.com/thu-spmi/SPMILM


Section Conclusion

• Language models play an important role for ASR!

• Random Field language models
 Avoid local normalization

 Being flexible to integrate rich features (both discrete and neural)

 Overcome “label bias” and “Exposure bias”

• More related work
 Residual energy-based models for text generation

 Electric: an energy-based cloze model for representation learning over text

107

• Yuntian Deng, Anton Bakhtin, Myle Ott, Arthur Szlam, and Marc'Aurelio Ranzato. Residual energy-based models 
for text generation, ICLR 2020.

• Kevin Clark, Minh-Thang Luong, Quoc V. Le, and Christopher D. Manning. Pre-training transformers as energy-
based cloze models, EMNLP 2020.



Content

108

I. Basics for end-to-end speech recognition
1. Probabilistic graphical modeling (PGM) framework
2. Classic hybrid DNN-HMM models
3. Connectionist Temporal Classification (CTC)
4. Attention based encoder-decoder (AED)
5. RNN transducer (RNNT)
6. Conditional random fields and sequence discriminative training

II. Improving end-to-end speech recognition
1. Data-efficiency
2. Neural architecture search
3. Multilingual and crosslingual ASR
4. Language modeling

III. Open questions and future directions

15-minute break



“WER we are and WER we think we are”

109Szymański, et al., "WER we are and WER we think we are", EMNLP 2020.

• Test: three different state-of-the-art commercial ASR solutions
• Call Center Conversations (CCC)
• The commercial ASR systems in our evaluation achieve nearly double the error rates 

(reported in the literatures) on both HUB’05 evaluation subsets.



New-generation ASR
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1970 1980 1990 2000 2010 2020 2030 2040 2050

HMM

GMM

N-gram,
Smoothing

Tree based state tying

MAP,
MLLR

fMLLR, Speaker 
adaptive training

WFST

Discriminative
Training, MMI, MPE

DNN-HMM

CTC

Attention seq2seq

RNN Transducer

Transformer

CRF

Strongly-Generalizable

Data-Efficient

AutoML

Trustworthy AI

• Greater representational capability of DNNs
• Larger amounts of labeled speech data for supervised training
• Powerful hardware such GPUs

Zhijian Ou, Invited Talk at National Conference on Acoustics, 2021/3/29, Shanghai

noises, 
accents, 
languages, 
scenarios, 
domains,
...
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